🎉   Please check out our new website over at books-etc.com.

Seller
Your price
£60.74
RRP: £79.99
Save £19.25 (24%)
Printed on Demand
Dispatched within 14-21 working days.

Distributed Algorithms for Message-Passing Systems

By (author) Michel Raynal
Format: Hardback
Publisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, Berlin, Germany
Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Published: 10th Jul 2013
Dimensions: w 156mm h 234mm d 29mm
Weight: 920g
ISBN-10: 3642381227
ISBN-13: 9783642381225
Barcode No: 9783642381225
Trade or Institutional customer? Contact us about large order quotes.
Synopsis
Distributed computing is at the heart of many applications. It arises as soon as one has to solve a problem in terms of entities -- such as processes, peers, processors, nodes, or agents -- that individually have only a partial knowledge of the many input parameters associated with the problem. In particular each entity cooperating towards the common goal cannot have an instantaneous knowledge of the current state of the other entities. Whereas parallel computing is mainly concerned with 'efficiency', and real-time computing is mainly concerned with 'on-time computing', distributed computing is mainly concerned with 'mastering uncertainty' created by issues such as the multiplicity of control flows, asynchronous communication, unstable behaviors, mobility, and dynamicity. While some distributed algorithms consist of a few lines only, their behavior can be difficult to understand and their properties hard to state and prove. The aim of this book is to present in a comprehensive way the basic notions, concepts, and algorithms of distributed computing when the distributed entities cooperate by sending and receiving messages on top of an asynchronous network. The book is composed of seventeen chapters structured into six parts: distributed graph algorithms, in particular what makes them different from sequential or parallel algorithms; logical time and global states, the core of the book; mutual exclusion and resource allocation; high-level communication abstractions; distributed detection of properties; and distributed shared memory. The author establishes clear objectives per chapter and the content is supported throughout with illustrative examples, summaries, exercises, and annotated bibliographies. This book constitutes an introduction to distributed computing and is suitable for advanced undergraduate students or graduate students in computer science and computer engineering, graduate students in mathematics interested in distributed computing, and practitioners and engineers involved in the design and implementation of distributed applications. The reader should have a basic knowledge of algorithms and operating systems.

New & Used

Seller Information Condition Price
-New£60.74
+ FREE UK P & P

What Reviewers Are Saying

Submit your review
Newspapers & Magazines
"The aim of this book is to present in a comprehensive way basic notions, concepts, and algorithms of distributed computing when the distributed entities cooperate by sending and receiving messages on top of an underlying network. ... This book is useful for senior-level undergraduate students and graduate students in computer science with basic knowledge of algorithms and operating systems." (T. C. Mohan, Mathematical Reviews, November, 2015)

"This book offers balanced coverage of the major topics encountered in courses on modern distributed computations. The text is primarily intended for courses on distributed systems; it can be used for both undergraduate and postgraduate courses. ... Overall, this title is an instructive and valuable book that deserves to be studied." (Dimitrios Katsaros, Computing Reviews, June, 2014)



"The book presents in well structured manner the basic concepts and algorithms currently used in distributed systems based on message passing. ... The book can be used as textbook by undergraduate students in distributed systems. What distinguishes this book from similar ones are the text accessibility and the well organization of a classical material. Many figures and pseudo-codes are helping the understanding of the algorithms." (Dana Petcu, zbMATH, Vol. 1282, 2014)